Modeling Terrestrial Processes in an ESM

Danica Lombardozzi National Center for Atmospheric Research

Ecological & Environmental Theory

Land Surface Model

Empirical Data

Ecological & Environmental Theory

Conceptual & Statistical Models

Land Surface Model

Process Models & Feedbacks

Empirical Data

Field Observations

Ecological & Environmental Theory

Conceptual & Statistical Models

Land Surface Model

Process Models & Feedbacks

Scaling Future Projections Complex Interactions Decisions & Impacts

Empirical Data

Field Observations

Outline

- 1. Why the land surface matters
- 2. Primary components of terrestrial energy balance
- 3. Primary components of hydrology
- 4. Primary components of the terrestrial carbon cycle

Community Earth System Model

The World in Global Climate Models

IPCC AR4

Community Earth System Model

Land models for Earth System prediction

(Dental constants)

Land models for Earth System prediction

(Carros Cossesses

The interdisciplinary evolution of land models

Land as an integral component Land as a lower boundary of the Earth System to the atmosphere Focus on land-atmosphere Mechanistic modeling of Simulate the dynamics of change (e.g., dynamic vegetation) energy fluxes land processes Processes define properties (feedbacks Limited representation of Properties define processes land processes & feedbacks (focus on short-term fluxes) and interactions across time scales) The Evolution of Land Modeling **Nutrients Dynamic Vegetation Plant Canopies Crops**, Irrigation Heterogeneity **Carbon Cycle** Land Cover Change **Surface Energy Fluxes Stomatal Resistance** Lakes, Rivers, Wetlands Groundwater **Lateral Flow** Urban **Soil Moisture**

90's

00's

10's

R. Fisher

70's

80's

The Community Land Model

(Contactores and

Why land?

Earth System Models

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Prominent terrestrial feedbacks:

- Snow cover and climate
- soil moisture-evapotranspiration-precipitation
- land use and land cover change
- carbon cycle
- reactive nitrogen
- chemistry-climate (BVOCs, O₃, CH₄, aerosols)
- Biomass burning

The role of a land model in an ESM

Land-atmosphere exchanges: energy, water vapor, CO_2 , dust, trace gases, etc.

Land surface states: soil moisture, soil temperature, canopy temperature, snow water equivalent, C and N stocks

Land surface characteristics: soil texture, surface roughness, albedo, emissivity, vegetation type, leaf area index, etc.

Ultimately, we need to move energy, moisture, and gases between the land surface and the atmosphere while conserving each.

Community Land Model

The land surface model solves Surface Energy Balance Surface Water Balance Carbon Balance at each model timestep

Community Land Model

Surface Energy Fluxes

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G$ +Energy Change

Inputs or Forcings

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

Inputs or Forcings

 S^{\downarrow} = incoming shortwave (solar) L^{\downarrow} = incoming longwave (infrared)

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

Response Fluxes

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

 S^{\dagger} = outgoing shortwave (reflected solar, due to albedo) L^{\dagger} = outgoing longwave (emitted infrared, $\varepsilon\sigma T^{4}$)

$$S^{\downarrow} - S^{\uparrow} + L^{\downarrow} - L^{\uparrow} = net radiation$$

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

- S^{\dagger} = outgoing shortwave (reflected solar, due to albedo) L^{\dagger} = outgoing longwave (emitted infrared, $\varepsilon\sigma T^{4}$)
- λ E = latent heat flux (evapotranspiration)
 - H = sensible heat flux
 - G = ground heat flux

$S^{\downarrow} + L^{\downarrow} = S^{\uparrow} + L^{\uparrow} + \lambda E + H + G + \text{Energy Change}$

- S^{\dagger} = outgoing shortwave (reflected solar, due to albedo) L^{\dagger} = outgoing longwave (emitted infrared, $\varepsilon\sigma T^{4}$)
- λ E = latent heat flux (evapotranspiration)
 - H = sensible heat flux
 - G = ground heat flux

Energy change = the change in energy of some reservoir (canopy, soil, etc.)

Often, we think of the land surface as affecting the energy balance through three properties/processes:

a. Albedob. Surface Roughnessc. Evapotranspiration

Often, we think of the land surface as affecting the energy balance through three properties/processes:

a. Albedob. Surface Roughnessc. Evapotranspiration

Often, we think of the land surface as affecting the energy balance through three properties/processes:

Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Often, we think of the land surface as affecting the energy balance through three properties/processes:

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press) Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Often, we think of the land surface as affecting the energy balance through three properties/processes:

How does deforestation affect Earth's temperature?

- a. Increase
- b. Decrease
- c. Neither
- d. Both

Davin & de Noblet-Ducoudré (2010) J Clim. 23:97-112

Davin & de Noblet-Ducoudré (2010) J Clim. 23:97-112

Davin & de Noblet-Ducoudré (2010) J Clim. 23:97-112

How does deforestation affect Earth's temperature?

a. Increase
b. Decrease
c. Neither
d. Both

Based on this study, the effect depends on the region. Deforestation cools higher latitudes but warms tropical latitudes.

Note that this is an active area of research, so this is not the final word on the impact of deforestation on climate.

Community Land Model

Surface Water Balance

(and other water balances such as snow and soil water)

$P = (E_s + E_t + E_c) + (R_{surf} + R_{sub-surf}) + \Delta SM/\Delta t$

(and other water balances such as snow and soil water)

$P = (E_s + E_t + E_c) + (R_{surf} + R_{sub-surf}) + \Delta SM/\Delta t$

P = rainfall

(and other water balances such as snow and soil water)

$$P = (E_s + E_t + E_c) + (R_{surf} + R_{sub-surf}) + \Delta SM/\Delta t$$

Evapotranspiration

- P = rainfall
- $E_s = soil evaporation$
- $E_t = transpiration$
- E_c = canopy evaporation

(and other water balances such as snow and soil water)

$$P = (E_s + E_t + E_c) + (R_{surf} + R_{sub-surf}) + \Delta SM/\Delta t$$

Evapotranspiration

Total Runoff

- P = rainfall
- $E_s = soil evaporation$
- $E_t = transpiration$
- E_c = canopy evaporation
- $$\label{eq:Rsurf} \begin{split} R_{surf} &= surface\ runoff \\ R_{sub-surf} &= sub-surface\ runoff \end{split}$$

(and other water balances such as snow and soil water)

$$P = (E_s + E_t + E_c) + (R_{surf} + R_{sub-surf}) + \Delta SM/\Delta t$$

Evapotranspiration

Total Runoff

- P = rainfall
- $E_s = soil evaporation$
- $E_t = transpiration$
- E_c = canopy evaporation
- $R_{surf} = surface runoff$ $R_{sub-surf} = sub-surface runoff$
- $\Delta SM/\Delta t$ = change in soil moisture over a time step

How does a decrease in transpiration affect runoff?

Assume precipitation is a forcing that does not change

- a. Increase
- b. Decrease
- c. Neither
- d. Both

% Change in Transpiration

Lombardozzi et al. 2015 J. Climate

% Change in Transpiration

% Change in Runoff

Lombardozzi et al. 2015 J. Climate

How does a decrease in transpiration affect runoff?

Assume precipitation is a forcing that does not change

a. Increase

- b. Decrease
- c. Neither
- d. Both

Community Land Model

Carbon Balance

Note: biogeochemistry is not always included in land models

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

NEE = net ecosystem exchange

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

NEE = net ecosystem exchange

GPP = gross primary productivity (photosynthesis)

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

Total respiration

- NEE = net ecosystem exchange
- GPP = gross primary productivity (photosynthesis)
- R_a = autotrophic respiration
- R_h = heterotrophic respiration

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

- NEE = net ecosystem exchange
- GPP = gross primary productivity (photosynthesis)
- R_a = autotrophic respiration
- R_h = heterotrophic respiration
- Fire = carbon flux due to fire

(and plant and soil carbon pools)

$NEE = GPP - R_a - R_h - Fire - LUC$

- NEE = net ecosystem exchange
- GPP = gross primary productivity (photosynthesis)
- R_a = autotrophic respiration
- R_h = heterotrophic respiration
- Fire = carbon flux due to fire
- LUC = C flux due to land use change

How does land use change affect ecosystem carbon?

Assume land use change primarily converts forests to pasture and croplands

- a. Increase
- b. Decrease
- c. Neither
- d. Both

Land use change decreases total C storage

Lombardozzi, unpublished data

How does land use change affect ecosystem carbon?

Assume land use change primarily converts forests to pasture and croplands

- a. Increase
- b. Decrease
- c. Neither
- d. Both

What wins? Biogeophysics vs Biogeochemistry

An example using land use change

Biogeophysics and biogeochemistry

ΔT (°C)

0.5

0.4

0.3

0.2

0.1

0.01

-0.01

-0.1

-0.2

-0.3

-0.4

-0.5

(a) Biogeophysical

Historical land use & land-cover change

- Biogeophysical processes decrease annual mean temperature (albedo)
- Deforestation releases carbon (warms temperature)

Biogeophysics and biogeochemistry

ΔT (°C)

0.5

0.4

0.3

0.2

0.1

0.01

-0.01

-0.1

-0.2

-0.3

-0.4

-0.5

(a) Biogeophysical

(b) Biogeochemical

(c) Net

Historical land use & land-cover change

- Biogeophysical processes decrease annual mean temperature (albedo)
- Deforestation releases carbon (warms temperature)

Biogeophysics and biogeochemistry

(a) Biogeophysical

(b) Biogeochemical

(c) Net

0.5
0.5
0.4
0.3
0.2
0.1
0.01
-0.01
-0.1
-0.2
-0.3
-0.4

-0.5

ΔT (°C)

Historical land use & land-cover change

- Biogeophysical processes decrease annual mean temperature (albedo)
- Deforestation releases carbon (warms temperature)
- Biogeochemical warming exceeds biogeophysical cooling

Prevailing paradigm

The dominant competing signals from historical deforestation are an increase in surface albedo countered by carbon emission to the atmosphere

Outline

- 1. Why the land surface matters
- 2. Primary components of terrestrial energy balance
- 3. Primary components of hydrology
- 4. Primary components of the terrestrial carbon cycle

Ecological & Environmental Theory

Conceptual & Statistical Models

Land Surface Model

Process Models & Feedbacks

Scaling Future Projections Complex Interactions Decisions & Impacts

Empirical Data

Field Observations

Multi-model carbon cycle uncertainty

1. Forcing (scenario) uncertainty GHG emission scenarios, land use, etc.

Scientific community: multiple scenarios

1. Forcing (scenario) uncertainty GHG emission scenarios, land use, etc.

Scientific community: multiple scenarios

2. Response (model) uncertainty Parameterizations, resolution, etc.

Scientific community: multiple models

1. Forcing (scenario) uncertainty GHG Emission scenarios, land use, etc.

Scientific community: multiple scenarios

2. Response (model) uncertainty Parameterizations, resolution, etc.

Scientific community: multiple models

3. Internal (natural, or unforced) variability Initial value problems (e.g., air temperature)

Scientific community: largely not represented

Many paths to reduce model uncertainty

Model intercomparisons (MIPs)

CMIP6: carbon cycle, land use, land -atmosphere interactions Range of plausible outcomes, but more models \neq better results

Model intracomparison

Focus on structural uncertainty within a model to identify processes contributing to uncertainty

Model benchmarking

Comprehensive model evaluation against observations

Model data-fusion

Data assimilation, parameter estimation

Comparison to real-world manipulative experiments

FACE, N addition

"Discover" critical missing processes

Processes that are ecologically important but poorly understood at the global scale Requires tuning key parameters to get a good simulation

Model hierarchy

Use models with similar process representation but different levels of complexity

Modeling Caveats

Land surface models are just a starting point for the science, not the science itself

It's easy to run the model & get an answer

It's much harder to understand why you got that answer

Land surface models like CLM are very complex and multidisciplinary. Be cognizant of how you use and interpret model simulations.