Carbon cycle in land surface models

CHESS Land Modelling Course Friday 6.10.17 Sarah Chadburn – Exeter, UK

Overview

- What is the carbon cycle?
- Model processes:
 - Coupling a DGVM to a climate model
 - Land use change and fire
 - Soil carbon modelling
- Case study: Site simulations

Overview of me

- I work on 'JULES'
- I work mainly with soil, and mainly it's cold
- My background is theoretical physics

Carbon quantities

```
Peta grams (Pg) = Giga tonnes (Gt).
```

 10^{15} grams = 10^{9} tonnes.

For reference: Emission since pre-industrial ~ 550 Gt. Allowed emissions to stay below 2°C, another 450 Gt.

Estimates of total soil carbon ~ **2300 Gt** Atmosphere ~ 700 Gt Vegetation ~ 500-600 Gt Ocean ~ 37,000 Gt

Transport of dissolved carbon to ocean via rivers.

Global carbon cycle

Net Ecosystem C Uptake

Primary production – Respiration(plant) – Respiration(microbe) – DOC etc – Fire emissions – Land use change

Net Ecosystem C Uptake

Net Ecosystem C Uptake

Net Ecosystem C Uptake

Soil moisture effects?

Dynamic vegetation model

Earliest global carbon cycle model...

Coupling to the atmosphere

Coupling to the atmosphere

Carbon-cycle modelling has come a long way since these early days

But there is still a long way to go...

Impacts of land use change

- Link land use change to mitigation strategies.
- Can we still feed everyone?

Land-use scenarios

Fraction of grid cell

Fire modelling: INFERNO

• Combine factors \rightarrow Burnt area

Fire modelling: INFERNO

 Combine factors → Burnt area → Carbon emissions (depending how much vegetation was in that area)

TRENDY runs, fraction of broadleaf tree

WWF Biome and ecoregions

1920

1860

1880

• Basic equation: $\Delta C = inputs - outputs$

- Basic equation: $\Delta C = inputs outputs$
- The first soil carbon models:

$$\frac{dC}{dt} = L_{input} - k(t)C$$

- Basic equation: $\Delta C = inputs outputs$
- The first soil carbon models:

$$\frac{dC}{dt} = L_{input} - k(t)C$$

Including soil carbon below the surface

No structure with depth

Humus

 Can also add a *dissolved organic carbon* (DOC) model which has its own decomposition, leaching, and transfer between pools.

Modelling soil carbon

- Basic equation: $\frac{dC}{dt} = L_{input} k(t)C$
- k(t) = modification of respiration due to temperature, moisture, etc. Different functions used in different models!

Exbrayat, J.-F. (2013) *Biogeosciences*, **10**, 7095-7108.

Modelling soil carbon

Impact of different temperature and moisture functions on global soil carbon:

Exbrayat, J.-F. (2013) *Biogeosciences*, **10**, 7095-7108.

Evaluating the model

- Are we getting the right answers for the right reasons?
- Have to evaluate the right things!

Evaluating the model

- Are we getting the right answers for the right reasons?
- Have to evaluate the right things!
- But this means you need to measure the right things.

Historical soil carbon distribution

Future response...

Future response...

How can we constrain this?

Future response...

How can we constrain this? We need to measure processes

Case study: *Site simulations* to understand model processes

How to set it up?

• Every half hour, the model needs to know:

Air temperature. Humidity. Wind speed. Downwards shortwave radiation. Downwards longwave radiation. Precipitation. Air pressure.

- All of these need to be *realistic for the site*.
- E.g. Air pressure is easy. Snowfall is very difficult.

How to set it up?

• **Type of soil?** Preferably, a *profile* of soil thermal and hydraulic properties (including... thermal conductivity, heat capacity, hydraulic conductivity, 'b' exponent, porosity, saturated soil water suction)

Note - you can also estimate these from a combination of texture (sand/silt/clay) and organic matter.

• **Type of vegetation?** (required for CLM) = "plant functional type"

Note - do not calibrate, only evaluate.

How to run it?

- 'Spin up' to equilibrium
- Start in this state and run to present day...

• 1. Continuous temperature and moisture

• 2. Detailed soil carbon profiles

• 3. Eddy covariance data partitioned to give GPP

• GPP per unit leaf area...

Developing

Take home messages

- Models represent important components of the carbon cycle but the uncertainties are still very large.
- Site simulations can help to understand the processes.
- Need to measure lots and lots of variables.