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Modeling Terrestrial
Processes in an ESM

Danica Lombardozzi
National Center for Atmospheric Research
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Outline

1. Why the surface matters

2. Primary components of terrestrial balance
3. Primary components of
4. Primary components of the terrestrial cycle
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The World in Global Climate Models
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f‘The |nterd| pllnary evolutlon of land models
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Land as a lower boundary Land as an integral component

to the atmosphere —_—_— of the Earth System

Dynamic Vegetation

Heterogeneity Carbon Cycle Crops, Irrigation

Stomatal Resistance Lakes, Rivers, Wetlands Groundwater
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Why land®
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Earth System Models

Biosphere-atmosphere
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Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press)
Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121

Prominent terrestrial feedbacks:
e Snow cover and climate
® Soil moisture-evapotranspiration-precipitation
e |and use and land cover change
e carbon cycle
® reactive nitrogen
e chemistry-climate (BVOCs, O3, CH,4, aerosols)

e Biomass burning



The role of a land model in an ESM

. energy, water vapor, CO,,
dust, trace gases, etc.

. soll moisture, soll temperature, canopy
temperature, snow water equivalent, C and N stocks

- soll texture, surface roughness,
albedo, emissivity, vegetation type, leaf area index, etc.

Ultimately, we need to move energy, moisture, and gases between the land
surface and the atmosphere while conserving each.
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S'+'=S"+L'+ AE+ H + G +Energy Change
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Inputs or Forcings



S'+'=S"+L'+ AE+ H + G +Energy Change

| |

|

Inputs or Forcings

S = incoming shortwave (solar)
| V= incoming longwave (infrared)



S'+'=S"+L'+ AE+ H + G +Energy Change
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Response Fluxes



S'+'=S"+L'+ AE+ H + G +Energy Change

St= outgoing shortwave (reflected solar, due to albedo)

LT= outgoing longwave (emitted infrared, eoT4)

Sl - ST + I_l - LT = net radiation



S'+'=S"+L'+ AE+ H + G +Energy Change

St= outgoing shortwave (reflected solar, due to albedo)

LT= outgoing longwave (emitted infrared, eoT4)

)E = latent heat flux (evapotranspiration)

H = sensible heat flux
G = ground heat flux



S'+'=S"+L'+ AE+ H + G +Energy Change

St= outgoing shortwave (reflected solar, due to albedo)

LT= outgoing longwave (emitted infrared, eoT4)

)E = latent heat flux (evapotranspiration)

H = sensible heat flux
G = ground heat flux

Energy change = the change in energy of some reservoir (canopy, soil, etc.)



Often, we think of the land surface as affecting the energy
balance through three properties/processes:

a. Albedo
b. Surface Roughness
c. Evapotranspiration



Surface Energy Balance

Often, we think of the land surface as affecting the energy
balance through three properties/processes:

a. Albedo
b. Surface Roughness
c. Evapotranspiration
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Often, we think of the land surface as affecting the energy
balance through three properties/processes:

Albedo directly affects
a Albedo net radiation

Trees are darker than grasses
and have lower albedo

Strong ﬂuxos
Weak fluxes

Cool surface
Reduced heating
High R, \ Decreased rain

LowR,

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press)
Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121




Often, we think of the land surface as affecting the energy
balance through three properties/processes:

Surface roughness
b Surface roughness affects sensible and
latent heat fluxes

Trees are tall anad
aerodynamically rough

Strong

turbulent
mxing

o § g’ y

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press)
Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121



Often, we think of the land surface as affecting the energy
balance through three properties/processes:

C Latent heat flux Latent heat flux
evaporatively cools

Trees transpire more
water than grasses

Strong sensible heat flux
warm, dry

High evapotranspiration
cool, wet

Wet

Bonan (2016) Ecological Climatology, 3rd ed (Cambridge Univ. Press)
Bonan (2016) Annu. Rev. Ecol. Evol. Syst. 47:97-121




How does deforestation affect Earth’s temperature?

a. Increase
0. Decrease
c. Neither
a. 50th




Influence of deforestation on climate

o)  NetResponse (annual mean) b) Albedo only
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Influence of deforestation on climate
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Influence of deforestation on climate

o)  NetResponse (annual mean) b) Albedo only
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c) Evapotranspiration Only d) Surface Roughness Only
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How does deforestation affect Earth’s temperature?

a. Increase
c. Neither
of Both

Based on this study, the effect depends on the region. Deforestation cools
higher latitudes but warms tropical latitudes.

Note that this is an active area of research, so this is not the final word on
the impact of deforestation on climate.
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P = (ES + Et + EC) + (Rsurf + I:%sub—surf) T ASM/At
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P = rainfall



P = (ES + Et + EC) + (Rsurf + I:%sub—surf) + ASM/At
| |

Evapotranspiration

P = rainfall

ZS = soll evaporation
- = transpiration

-, = canopy evaporation




P = (ES + Et + EC) + (Rsurf + I:%sub—surf) + ASM/At
| . |

Evapotranspiration Total Runoft

P = rainfall

ZS = soll evaporation
- = transpiration

-, = canopy evaporation

R<.,r = surface runoff
Reunsur = SUb-surface runoft



P = (ES + Et + EC) + (Rsurf + I:%sub—surf) + ASM/At

| | | |
Evapotranspiration Total Runoft

P = rainfall

ZS = soll evaporation
- = transpiration

-, = canopy evaporation

R<.,r = surface runoff
Reunsur = SUb-surface runoft

ASM/ At = change in soil moisture over a time step



How does a decrease In transpiration affect runoff?

Assume precipitation is a forcing that does not change

a. Increase
0. Decrease
c. Neither
d. Both
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% Change in Transpiration % Change in Runoff

Lombardozzi et al. 2015 J. Climate



How does a decrease In transpiration affect runoff?

Assume precipitation is a forcing that does not change

b. Decrease
c. Neither
d. Both




Community Land Model

Photosynthesis BVOCs

Fire

‘ “ \ ﬁ Autotrophic

respiration

N dep
Heterotrop N fix CH,

N,O ﬁ

Denitrification
N leaching

Root litter )
\‘\W \

Note:
biogeochemistry is
not always included
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NEE = GPP - R, - R, - Fire - LUC
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NEE = net ecosystem exchange



NEE = GPP - R, - Ry - Fire - LUC

T

NEE = net ecosystem exchange

GPP = gross primary productivity (photosynthesis)



NEE = GPP - R, - Ry - Fire - LUC
| |

Total respiration

NEE = net ecosystem exchange
GPP = gross primary productivity (photosynthesis)

R. = autotrophic respiration
,» = heterotrophic respiration



NEE = GPP - R, - Ry - Fire - LUC

NEE = net ecosystem exchange
GPP = gross primary productivity (photosynthesis)

R. = autotrophic respiration
,» = heterotrophic respiration

Fire = carbon flux due to fire



NEE = GPP - R, - Ry - Fire - LUC

NEE = net ecosystem exchange
GPP = gross primary productivity (photosynthesis)

R. = autotrophic respiration
Ry = heterotrophic respiration

Fire = carbon flux due to fire

LUC = C flux due to land use change



How does land use change affect ecosystem carbon?

Assume land use change primarily converts forests to pasture and croplands

a. Increase
0. Decrease
c. Neither
d. Both
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How does land use change affect ecosystem carbon?

Assume land use change primarily converts forests to pasture and croplands

a. |ncrease

c. Neilther
d. Both




What wins”? Biogeophysics vs Biogeochemistry

An example using land use change
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Biogeophysics and biogeochemistry

(a) Biogeophysical

Historical land use & land-cover change

Biogeophysical processes decrease
annual mean temperature (albedo)

Deforestation releases carbon

AT (°C)
(warms temperature)

U U
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0.01
— -0.01
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-0.2
-0.3

(b) Biogeochemical

(c) Net

-0.5

Pongratz et al. (2010) GRL, 37, doi:10.1029/2010GL043010
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Biogeophysics and biogeochemistry

(a) Biogeophysical

- -
W= S

T S e T Historical land use & land-cover change

(d Biogeophysical processes decrease
annual mean temperature (albedo)

(J Deforestation releases carbon

AT (°C)
(warms temperature)

0.5
0.4
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0.2
0.1
0.01
-0.01

Pongratz et al. (2010) GRL, 37, doi:10.1029/2010GL043010
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Biogeophysics and biogeochemistry

(a) Biogeophysical

Historical land use & land-cover change

(d Biogeophysical processes decrease
annual mean temperature (albedo)

(J Deforestation releases carbon
(warms temperature)

O Biogeochemical warming exceeds
biogeophysical cooling

Prevailing paradigm
The dominant competing signals from
historical deforestation are an increase in

surface albedo countered by carbon emission
to the atmosphere

Pongratz et al. (2010) GRL, 37, doi:10.1029/2010GL043010
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Multi-model carbon cycle uncertainty
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Sources of Uncertainty in Carbon Cycle Modeling
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NORTHERN HEMISPHERE (20N-90N)

2. Response (model) uncertainty o
Parameterizations, resolution, etc. '

Scientific community: multiple models

1986-2005 GPP [PgC/month]

Month Anav et al. 2013



Sources of Uncertainty in Carbon Cycle Modeling
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3. Internal (natural, or unforced) variability

Initial value problems (e.g., air temperature)

GPP

Scientific community: largely not represented

Year



Many paths to reduce model uncertainty

CMIP6: carbon cycle, land use, land -atmosphere interactions
Range of plausible outcomes, but more models # better results

Focus on structural uncertainty within a model to identify processes contributing to uncertainty
Comprehensive model evaluation against observations

Data assimilation, parameter estimation

FACE, N addition

Processes that are ecologically important but poorly understood at the global scale
Requires tuning key parameters to get a good simulation

Use models with similar process representation but different levels of complexity



Modeling Caveats

lt's easy to run the model & get an answer
lt's much harder to understand why you got that answer

Land surface models like CLM are very complex and
multidisciplinary. Be cognizant of how you use and
interpret model simulations.




